AutoRAG Setup & Configuration
AutoRAG Setup & Configuration
AutoRAG (Automatic Retrieval-Augmented Generation) provides intelligent document processing and contextual AI assistance for legal professionals. This guide covers the complete setup and configuration process.
Overview
AutoRAG enhances the ZServed platform with:
- Intelligent Document Processing - Automatic analysis and indexing of legal documents
- Contextual AI Responses - AI assistance based on case-specific documents and legal knowledge
- Advanced Search - Semantic search across documents using vector embeddings
- Legal Knowledge Base - Pre-trained legal concepts and precedents
- Real-time Analysis - Live document analysis and insights
Prerequisites
System Requirements
- ZServed platform already deployed
- Cloudflare Vectorize enabled
- OpenAI API access (GPT-4 recommended)
- At least 1GB storage for embeddings
Service Dependencies
- Cloudflare Workers AI - For embedding generation
- Vectorize - For vector storage and similarity search
- D1 Database - For metadata and configuration storage
- R2 Storage - For processed document storage
Installation Process
1. Enable AutoRAG Schema
Apply the AutoRAG database schema:
# Apply AutoRAG schemawrangler d1 execute zserved-db --file=migrations/ai-analytics-schema.sql --remote
# For tenant-specific deploymentwrangler d1 execute "zserved-db-{tenant}" --file=migrations/ai-analytics-schema.sql --remote
2. Configure Vectorize Indices
Create dedicated Vectorize indices for AutoRAG:
# Create document embeddings indexwrangler vectorize create autorag-documents \ --dimensions=1536 \ --metric=cosine
# Create knowledge base indexwrangler vectorize create autorag-knowledge \ --dimensions=1536 \ --metric=cosine
# For tenant-specific indiceswrangler vectorize create autorag-documents-{tenant} \ --dimensions=1536 \ --metric=cosine
3. Update Wrangler Configuration
Add AutoRAG bindings to your wrangler.jsonc
:
{ "name": "zserved", "main": "src/index.ts", "compatibility_date": "2024-01-01", "node_compat": true, "bindings": [ { "name": "AUTORAG_DOCUMENTS", "type": "vectorize", "index_name": "autorag-documents" }, { "name": "AUTORAG_KNOWLEDGE", "type": "vectorize", "index_name": "autorag-knowledge" } ]}
4. Environment Configuration
Add AutoRAG-specific environment variables:
# AutoRAG ConfigurationAUTORAG_ENABLED="true"AUTORAG_MODEL="gpt-4-turbo-preview"AUTORAG_EMBEDDING_MODEL="text-embedding-3-large"AUTORAG_MAX_TOKENS="4000"AUTORAG_TEMPERATURE="0.1"
# Knowledge Base ConfigurationAUTORAG_KB_ENABLED="true"AUTORAG_KB_UPDATE_INTERVAL="24h"AUTORAG_KB_SOURCES="legal-precedents,statutes,regulations"
Configuration Options
Core AutoRAG Settings
Configure AutoRAG behavior in your platform:
export const AutoRAGConfig = { // Document Processing documentProcessing: { enabled: true, autoIndex: true, chunkSize: 1000, chunkOverlap: 200, supportedTypes: [ 'application/pdf', 'text/plain', 'application/msword', 'application/vnd.openxmlformats-officedocument.wordprocessingml.document' ] },
// AI Model Configuration models: { embedding: 'text-embedding-3-large', generation: 'gpt-4-turbo-preview', analysis: 'gpt-4' },
// Search Configuration search: { maxResults: 20, minSimilarity: 0.7, boostFactors: { recentDocuments: 1.2, caseSpecific: 1.5, legalPrecedents: 1.3 } },
// Knowledge Base knowledgeBase: { enabled: true, autoUpdate: true, updateInterval: '24h', sources: [ 'legal-precedents', 'federal-statutes', 'state-regulations', 'case-law' ] }};
Vector Embedding Configuration
Configure embedding generation and storage:
export const EmbeddingConfig = { // Embedding Model Settings model: 'text-embedding-3-large', dimensions: 1536,
// Processing Settings batchSize: 100, maxRetries: 3, timeout: 30000,
// Storage Configuration indexing: { autoIndex: true, updateExisting: false, versioning: true },
// Performance Optimization caching: { enabled: true, ttl: 3600, // 1 hour maxSize: 10000 // max cached embeddings }};
Knowledge Base Setup
1. Legal Knowledge Sources
Initialize the legal knowledge base:
# Run knowledge base seeding scriptnpm run seed-knowledge-base
# Or manually seed specific areasnpm run seed-knowledge -- --area="family-law"npm run seed-knowledge -- --area="criminal-defense"npm run seed-knowledge -- --area="contract-law"
2. Custom Knowledge Sources
Add firm-specific legal knowledge:
export const CustomKnowledge = { // Firm-specific templates templates: [ { type: 'motion', category: 'family-law', title: 'Motion for Temporary Custody', content: '...', jurisdiction: 'michigan' } ],
// Local regulations localLaw: [ { jurisdiction: 'kent-county', type: 'family-court-rule', content: '...' } ],
// Precedents and case law precedents: [ { case: 'Example v. Example', citation: '123 Mich App 456 (2023)', summary: '...', relevantLaw: ['custody', 'best-interest'] } ]};
3. Automated Knowledge Updates
Configure automatic knowledge base updates:
export class KnowledgeUpdater { async updateKnowledgeBase() { // Check for new legal updates const updates = await this.fetchLegalUpdates();
// Process and embed new content for (const update of updates) { const embedding = await this.generateEmbedding(update.content); await this.storeKnowledge(update, embedding); }
// Clean outdated entries await this.cleanOutdatedKnowledge(); }
private async fetchLegalUpdates() { // Integration with legal databases // Westlaw, LexisNexis, or other legal data sources }}
Document Processing Pipeline
1. Automatic Document Indexing
Configure automatic processing of uploaded documents:
export class DocumentProcessor { async processDocument(file: File, metadata: DocumentMetadata) { // Extract text content const content = await this.extractText(file);
// Chunk document for processing const chunks = this.chunkDocument(content);
// Generate embeddings const embeddings = await Promise.all( chunks.map(chunk => this.generateEmbedding(chunk)) );
// Store in vector database await this.storeDocumentVectors(file.id, chunks, embeddings);
// Extract legal concepts const concepts = await this.extractLegalConcepts(content);
// Store metadata await this.storeDocumentMetadata(file.id, { ...metadata, concepts, processed: true, processingDate: new Date() }); }
private chunkDocument(content: string): string[] { // Intelligent chunking preserving legal structure // Respect paragraph boundaries, legal citations, etc. }}
2. Real-time Analysis
Enable real-time document analysis:
export class RealTimeAnalyzer { async analyzeDocument(documentId: string) { // Retrieve document and related vectors const document = await this.getDocument(documentId); const vectors = await this.getDocumentVectors(documentId);
// Find similar documents const similar = await this.findSimilarDocuments(vectors);
// Identify key legal issues const issues = await this.identifyLegalIssues(document.content);
// Generate summary and recommendations const analysis = await this.generateAnalysis({ document, similarDocuments: similar, legalIssues: issues });
return analysis; }}
Integration with ZServed Features
1. Gavel AI Integration
Enhance Gavel AI with AutoRAG capabilities:
export class GavelAutoRAG { async enhancedChat(message: string, context: ChatContext) { // Retrieve relevant documents const relevantDocs = await this.searchRelevantDocuments( message, context.caseId );
// Get knowledge base context const knowledgeContext = await this.getKnowledgeContext(message);
// Generate enhanced response const response = await this.generateResponse({ userMessage: message, documentContext: relevantDocs, knowledgeContext, conversationHistory: context.history });
return { response, sources: [...relevantDocs, ...knowledgeContext], confidence: this.calculateConfidence(response) }; }}
2. Client Portal Integration
Add AutoRAG insights to client portal:
export class ClientPortalAutoRAG { async getCaseInsights(caseId: string) { // Analyze case documents const documents = await this.getCaseDocuments(caseId); const analysis = await this.analyzeDocuments(documents);
// Generate client-friendly summary const summary = await this.generateClientSummary(analysis);
// Identify next steps const nextSteps = await this.suggestNextSteps(analysis);
return { summary, nextSteps, keyDocuments: analysis.importantDocuments, timeline: analysis.timeline }; }}
Performance Optimization
1. Caching Strategy
Implement intelligent caching for AutoRAG:
export class AutoRAGCache { private embeddingCache = new Map(); private responseCache = new Map();
async getCachedEmbedding(text: string) { const hash = this.hashText(text); if (this.embeddingCache.has(hash)) { return this.embeddingCache.get(hash); }
const embedding = await this.generateEmbedding(text); this.embeddingCache.set(hash, embedding); return embedding; }
async getCachedResponse(query: string, context: string) { const cacheKey = this.generateCacheKey(query, context); if (this.responseCache.has(cacheKey)) { return this.responseCache.get(cacheKey); }
const response = await this.generateResponse(query, context); this.responseCache.set(cacheKey, response); return response; }}
2. Batch Processing
Optimize with batch processing:
export class BatchProcessor { async processBatch(items: ProcessingItem[]) { // Group by processing type const groups = this.groupByType(items);
// Process embeddings in batches if (groups.embeddings?.length > 0) { await this.processBatchEmbeddings(groups.embeddings); }
// Process analysis in batches if (groups.analysis?.length > 0) { await this.processBatchAnalysis(groups.analysis); } }
private async processBatchEmbeddings(items: EmbeddingItem[]) { const batchSize = 100; for (let i = 0; i < items.length; i += batchSize) { const batch = items.slice(i, i + batchSize); await this.processEmbeddingBatch(batch); } }}
Monitoring & Analytics
1. AutoRAG Metrics
Track AutoRAG performance:
export class AutoRAGMetrics { async trackMetrics() { const metrics = { // Performance metrics avgResponseTime: await this.getAverageResponseTime(), embeddingGenerationRate: await this.getEmbeddingRate(), searchAccuracy: await this.getSearchAccuracy(),
// Usage metrics dailyQueries: await this.getDailyQueryCount(), documentProcessingVolume: await this.getProcessingVolume(), knowledgeBaseSize: await this.getKnowledgeBaseSize(),
// Quality metrics userSatisfactionScore: await this.getUserSatisfaction(), responseRelevanceScore: await this.getRelevanceScore() };
await this.logMetrics(metrics); return metrics; }}
2. Usage Analytics
Monitor AutoRAG usage patterns:
export class UsageAnalytics { async generateUsageReport(timeframe: string) { return { queryVolume: await this.getQueryVolume(timeframe), popularDocumentTypes: await this.getPopularDocTypes(timeframe), commonQueries: await this.getCommonQueries(timeframe), performanceMetrics: await this.getPerformanceMetrics(timeframe), userEngagement: await this.getUserEngagement(timeframe) }; }}
Security & Compliance
1. Data Privacy
Ensure AutoRAG complies with legal data requirements:
export class AutoRAGSecurity { async processDocument(document: Document) { // Check for privileged information const privilegedContent = await this.detectPrivileged(document); if (privilegedContent.length > 0) { throw new Error('Document contains attorney-client privileged information'); }
// Check for PII const piiDetected = await this.detectPII(document); if (piiDetected.length > 0) { document = await this.redactPII(document, piiDetected); }
// Encrypt before storage const encrypted = await this.encryptDocument(document); return encrypted; }}
2. Access Controls
Implement strict access controls:
export class AutoRAGAccess { async checkAccess(userId: string, documentId: string, operation: string) { // Verify user permissions const userPerms = await this.getUserPermissions(userId); const docPerms = await this.getDocumentPermissions(documentId);
// Check tenant isolation if (userPerms.tenantId !== docPerms.tenantId) { throw new Error('Cross-tenant access denied'); }
// Verify operation permissions if (!this.hasPermission(userPerms, operation)) { throw new Error('Insufficient permissions'); }
return true; }}
Troubleshooting
Common Issues
-
Embedding Generation Fails:
Terminal window # Check OpenAI API statuscurl -H "Authorization: Bearer $OPENAI_API_KEY" \https://api.openai.com/v1/models -
Vector Search Returns No Results:
Terminal window # Check Vectorize indexwrangler vectorize get autorag-documents# Verify embeddings existwrangler vectorize query autorag-documents \--vector="[0.1, 0.2, ...]" \--top-k=5 -
Document Processing Stalls:
Terminal window # Check processing queuewrangler d1 execute zserved-db \--command "SELECT * FROM autorag_processing_queue WHERE status = 'pending';"
Performance Issues
-
Slow Response Times:
- Enable caching for frequent queries
- Batch embedding generation
- Optimize vector index configuration
-
High Resource Usage:
- Implement request queuing
- Use smaller embedding models for non-critical operations
- Cache frequently accessed embeddings
Support
For AutoRAG-specific issues:
- Check the AutoRAG troubleshooting guide
- Review performance optimization tips
- Contact support with AutoRAG logs and configuration details
Next Steps
After AutoRAG setup:
- Test document processing - Upload test documents and verify processing
- Configure knowledge base - Add firm-specific legal knowledge
- Train users - Provide training on AutoRAG features
- Monitor performance - Set up dashboards and alerts
- Optimize settings - Fine-tune based on usage patterns
For advanced configuration, see the AutoRAG Advanced Guide.