Skip to content

AutoRAG Setup & Configuration

AutoRAG Setup & Configuration

AutoRAG (Automatic Retrieval-Augmented Generation) provides intelligent document processing and contextual AI assistance for legal professionals. This guide covers the complete setup and configuration process.

Overview

AutoRAG enhances the ZServed platform with:

  • Intelligent Document Processing - Automatic analysis and indexing of legal documents
  • Contextual AI Responses - AI assistance based on case-specific documents and legal knowledge
  • Advanced Search - Semantic search across documents using vector embeddings
  • Legal Knowledge Base - Pre-trained legal concepts and precedents
  • Real-time Analysis - Live document analysis and insights

Prerequisites

System Requirements

  • ZServed platform already deployed
  • Cloudflare Vectorize enabled
  • OpenAI API access (GPT-4 recommended)
  • At least 1GB storage for embeddings

Service Dependencies

  • Cloudflare Workers AI - For embedding generation
  • Vectorize - For vector storage and similarity search
  • D1 Database - For metadata and configuration storage
  • R2 Storage - For processed document storage

Installation Process

1. Enable AutoRAG Schema

Apply the AutoRAG database schema:

Terminal window
# Apply AutoRAG schema
wrangler d1 execute zserved-db --file=migrations/ai-analytics-schema.sql --remote
# For tenant-specific deployment
wrangler d1 execute "zserved-db-{tenant}" --file=migrations/ai-analytics-schema.sql --remote

2. Configure Vectorize Indices

Create dedicated Vectorize indices for AutoRAG:

Terminal window
# Create document embeddings index
wrangler vectorize create autorag-documents \
--dimensions=1536 \
--metric=cosine
# Create knowledge base index
wrangler vectorize create autorag-knowledge \
--dimensions=1536 \
--metric=cosine
# For tenant-specific indices
wrangler vectorize create autorag-documents-{tenant} \
--dimensions=1536 \
--metric=cosine

3. Update Wrangler Configuration

Add AutoRAG bindings to your wrangler.jsonc:

{
"name": "zserved",
"main": "src/index.ts",
"compatibility_date": "2024-01-01",
"node_compat": true,
"bindings": [
{
"name": "AUTORAG_DOCUMENTS",
"type": "vectorize",
"index_name": "autorag-documents"
},
{
"name": "AUTORAG_KNOWLEDGE",
"type": "vectorize",
"index_name": "autorag-knowledge"
}
]
}

4. Environment Configuration

Add AutoRAG-specific environment variables:

Terminal window
# AutoRAG Configuration
AUTORAG_ENABLED="true"
AUTORAG_MODEL="gpt-4-turbo-preview"
AUTORAG_EMBEDDING_MODEL="text-embedding-3-large"
AUTORAG_MAX_TOKENS="4000"
AUTORAG_TEMPERATURE="0.1"
# Knowledge Base Configuration
AUTORAG_KB_ENABLED="true"
AUTORAG_KB_UPDATE_INTERVAL="24h"
AUTORAG_KB_SOURCES="legal-precedents,statutes,regulations"

Configuration Options

Core AutoRAG Settings

Configure AutoRAG behavior in your platform:

autorag-config.ts
export const AutoRAGConfig = {
// Document Processing
documentProcessing: {
enabled: true,
autoIndex: true,
chunkSize: 1000,
chunkOverlap: 200,
supportedTypes: [
'application/pdf',
'text/plain',
'application/msword',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
]
},
// AI Model Configuration
models: {
embedding: 'text-embedding-3-large',
generation: 'gpt-4-turbo-preview',
analysis: 'gpt-4'
},
// Search Configuration
search: {
maxResults: 20,
minSimilarity: 0.7,
boostFactors: {
recentDocuments: 1.2,
caseSpecific: 1.5,
legalPrecedents: 1.3
}
},
// Knowledge Base
knowledgeBase: {
enabled: true,
autoUpdate: true,
updateInterval: '24h',
sources: [
'legal-precedents',
'federal-statutes',
'state-regulations',
'case-law'
]
}
};

Vector Embedding Configuration

Configure embedding generation and storage:

embedding-config.ts
export const EmbeddingConfig = {
// Embedding Model Settings
model: 'text-embedding-3-large',
dimensions: 1536,
// Processing Settings
batchSize: 100,
maxRetries: 3,
timeout: 30000,
// Storage Configuration
indexing: {
autoIndex: true,
updateExisting: false,
versioning: true
},
// Performance Optimization
caching: {
enabled: true,
ttl: 3600, // 1 hour
maxSize: 10000 // max cached embeddings
}
};

Knowledge Base Setup

Initialize the legal knowledge base:

Terminal window
# Run knowledge base seeding script
npm run seed-knowledge-base
# Or manually seed specific areas
npm run seed-knowledge -- --area="family-law"
npm run seed-knowledge -- --area="criminal-defense"
npm run seed-knowledge -- --area="contract-law"

2. Custom Knowledge Sources

Add firm-specific legal knowledge:

custom-knowledge.ts
export const CustomKnowledge = {
// Firm-specific templates
templates: [
{
type: 'motion',
category: 'family-law',
title: 'Motion for Temporary Custody',
content: '...',
jurisdiction: 'michigan'
}
],
// Local regulations
localLaw: [
{
jurisdiction: 'kent-county',
type: 'family-court-rule',
content: '...'
}
],
// Precedents and case law
precedents: [
{
case: 'Example v. Example',
citation: '123 Mich App 456 (2023)',
summary: '...',
relevantLaw: ['custody', 'best-interest']
}
]
};

3. Automated Knowledge Updates

Configure automatic knowledge base updates:

knowledge-updater.ts
export class KnowledgeUpdater {
async updateKnowledgeBase() {
// Check for new legal updates
const updates = await this.fetchLegalUpdates();
// Process and embed new content
for (const update of updates) {
const embedding = await this.generateEmbedding(update.content);
await this.storeKnowledge(update, embedding);
}
// Clean outdated entries
await this.cleanOutdatedKnowledge();
}
private async fetchLegalUpdates() {
// Integration with legal databases
// Westlaw, LexisNexis, or other legal data sources
}
}

Document Processing Pipeline

1. Automatic Document Indexing

Configure automatic processing of uploaded documents:

document-processor.ts
export class DocumentProcessor {
async processDocument(file: File, metadata: DocumentMetadata) {
// Extract text content
const content = await this.extractText(file);
// Chunk document for processing
const chunks = this.chunkDocument(content);
// Generate embeddings
const embeddings = await Promise.all(
chunks.map(chunk => this.generateEmbedding(chunk))
);
// Store in vector database
await this.storeDocumentVectors(file.id, chunks, embeddings);
// Extract legal concepts
const concepts = await this.extractLegalConcepts(content);
// Store metadata
await this.storeDocumentMetadata(file.id, {
...metadata,
concepts,
processed: true,
processingDate: new Date()
});
}
private chunkDocument(content: string): string[] {
// Intelligent chunking preserving legal structure
// Respect paragraph boundaries, legal citations, etc.
}
}

2. Real-time Analysis

Enable real-time document analysis:

real-time-analyzer.ts
export class RealTimeAnalyzer {
async analyzeDocument(documentId: string) {
// Retrieve document and related vectors
const document = await this.getDocument(documentId);
const vectors = await this.getDocumentVectors(documentId);
// Find similar documents
const similar = await this.findSimilarDocuments(vectors);
// Identify key legal issues
const issues = await this.identifyLegalIssues(document.content);
// Generate summary and recommendations
const analysis = await this.generateAnalysis({
document,
similarDocuments: similar,
legalIssues: issues
});
return analysis;
}
}

Integration with ZServed Features

1. Gavel AI Integration

Enhance Gavel AI with AutoRAG capabilities:

gavel-autorag-integration.ts
export class GavelAutoRAG {
async enhancedChat(message: string, context: ChatContext) {
// Retrieve relevant documents
const relevantDocs = await this.searchRelevantDocuments(
message,
context.caseId
);
// Get knowledge base context
const knowledgeContext = await this.getKnowledgeContext(message);
// Generate enhanced response
const response = await this.generateResponse({
userMessage: message,
documentContext: relevantDocs,
knowledgeContext,
conversationHistory: context.history
});
return {
response,
sources: [...relevantDocs, ...knowledgeContext],
confidence: this.calculateConfidence(response)
};
}
}

2. Client Portal Integration

Add AutoRAG insights to client portal:

client-portal-autorag.ts
export class ClientPortalAutoRAG {
async getCaseInsights(caseId: string) {
// Analyze case documents
const documents = await this.getCaseDocuments(caseId);
const analysis = await this.analyzeDocuments(documents);
// Generate client-friendly summary
const summary = await this.generateClientSummary(analysis);
// Identify next steps
const nextSteps = await this.suggestNextSteps(analysis);
return {
summary,
nextSteps,
keyDocuments: analysis.importantDocuments,
timeline: analysis.timeline
};
}
}

Performance Optimization

1. Caching Strategy

Implement intelligent caching for AutoRAG:

autorag-cache.ts
export class AutoRAGCache {
private embeddingCache = new Map();
private responseCache = new Map();
async getCachedEmbedding(text: string) {
const hash = this.hashText(text);
if (this.embeddingCache.has(hash)) {
return this.embeddingCache.get(hash);
}
const embedding = await this.generateEmbedding(text);
this.embeddingCache.set(hash, embedding);
return embedding;
}
async getCachedResponse(query: string, context: string) {
const cacheKey = this.generateCacheKey(query, context);
if (this.responseCache.has(cacheKey)) {
return this.responseCache.get(cacheKey);
}
const response = await this.generateResponse(query, context);
this.responseCache.set(cacheKey, response);
return response;
}
}

2. Batch Processing

Optimize with batch processing:

batch-processor.ts
export class BatchProcessor {
async processBatch(items: ProcessingItem[]) {
// Group by processing type
const groups = this.groupByType(items);
// Process embeddings in batches
if (groups.embeddings?.length > 0) {
await this.processBatchEmbeddings(groups.embeddings);
}
// Process analysis in batches
if (groups.analysis?.length > 0) {
await this.processBatchAnalysis(groups.analysis);
}
}
private async processBatchEmbeddings(items: EmbeddingItem[]) {
const batchSize = 100;
for (let i = 0; i < items.length; i += batchSize) {
const batch = items.slice(i, i + batchSize);
await this.processEmbeddingBatch(batch);
}
}
}

Monitoring & Analytics

1. AutoRAG Metrics

Track AutoRAG performance:

autorag-metrics.ts
export class AutoRAGMetrics {
async trackMetrics() {
const metrics = {
// Performance metrics
avgResponseTime: await this.getAverageResponseTime(),
embeddingGenerationRate: await this.getEmbeddingRate(),
searchAccuracy: await this.getSearchAccuracy(),
// Usage metrics
dailyQueries: await this.getDailyQueryCount(),
documentProcessingVolume: await this.getProcessingVolume(),
knowledgeBaseSize: await this.getKnowledgeBaseSize(),
// Quality metrics
userSatisfactionScore: await this.getUserSatisfaction(),
responseRelevanceScore: await this.getRelevanceScore()
};
await this.logMetrics(metrics);
return metrics;
}
}

2. Usage Analytics

Monitor AutoRAG usage patterns:

usage-analytics.ts
export class UsageAnalytics {
async generateUsageReport(timeframe: string) {
return {
queryVolume: await this.getQueryVolume(timeframe),
popularDocumentTypes: await this.getPopularDocTypes(timeframe),
commonQueries: await this.getCommonQueries(timeframe),
performanceMetrics: await this.getPerformanceMetrics(timeframe),
userEngagement: await this.getUserEngagement(timeframe)
};
}
}

Security & Compliance

1. Data Privacy

Ensure AutoRAG complies with legal data requirements:

autorag-security.ts
export class AutoRAGSecurity {
async processDocument(document: Document) {
// Check for privileged information
const privilegedContent = await this.detectPrivileged(document);
if (privilegedContent.length > 0) {
throw new Error('Document contains attorney-client privileged information');
}
// Check for PII
const piiDetected = await this.detectPII(document);
if (piiDetected.length > 0) {
document = await this.redactPII(document, piiDetected);
}
// Encrypt before storage
const encrypted = await this.encryptDocument(document);
return encrypted;
}
}

2. Access Controls

Implement strict access controls:

autorag-access.ts
export class AutoRAGAccess {
async checkAccess(userId: string, documentId: string, operation: string) {
// Verify user permissions
const userPerms = await this.getUserPermissions(userId);
const docPerms = await this.getDocumentPermissions(documentId);
// Check tenant isolation
if (userPerms.tenantId !== docPerms.tenantId) {
throw new Error('Cross-tenant access denied');
}
// Verify operation permissions
if (!this.hasPermission(userPerms, operation)) {
throw new Error('Insufficient permissions');
}
return true;
}
}

Troubleshooting

Common Issues

  1. Embedding Generation Fails:

    Terminal window
    # Check OpenAI API status
    curl -H "Authorization: Bearer $OPENAI_API_KEY" \
    https://api.openai.com/v1/models
  2. Vector Search Returns No Results:

    Terminal window
    # Check Vectorize index
    wrangler vectorize get autorag-documents
    # Verify embeddings exist
    wrangler vectorize query autorag-documents \
    --vector="[0.1, 0.2, ...]" \
    --top-k=5
  3. Document Processing Stalls:

    Terminal window
    # Check processing queue
    wrangler d1 execute zserved-db \
    --command "SELECT * FROM autorag_processing_queue WHERE status = 'pending';"

Performance Issues

  1. Slow Response Times:

    • Enable caching for frequent queries
    • Batch embedding generation
    • Optimize vector index configuration
  2. High Resource Usage:

    • Implement request queuing
    • Use smaller embedding models for non-critical operations
    • Cache frequently accessed embeddings

Support

For AutoRAG-specific issues:

Next Steps

After AutoRAG setup:

  1. Test document processing - Upload test documents and verify processing
  2. Configure knowledge base - Add firm-specific legal knowledge
  3. Train users - Provide training on AutoRAG features
  4. Monitor performance - Set up dashboards and alerts
  5. Optimize settings - Fine-tune based on usage patterns

For advanced configuration, see the AutoRAG Advanced Guide.